
ROS2 Navigation &
Linorobot2

(including SLAM)

Paul Bouchier, MSEE, MSCS
● Embedded systems engineer - HW & SW

design
● 9 years professional robotics experience

○ Autonomous full-size trucks
○ System test & calibration
○ HW & SW subsystem design

● 15 years personal experience with ROS
● Past & present DPRG president
● 2024 winner - Robocolumbus competition

Overview

Linorobot is a set of SW packages that enables compatible robots to navigate
using ROS’ map-based navigation with no programming required.

● What is ROS?
● What is Linorobot?
● ROS navigation concepts, including SLAM
● Linorobot architecture
● Demos
● How to build your own linorobot

What is ROS?

● Plumbing: messaging & service rqst infrastructure connecting nodes
● Tools: visualize navigation, topics & messages, introspection, log/debug
● Capabilities: Navigation, Path planning (arms & vehicles)
● Social Ecosystem: Community of developers, adjacent products (OpenCV),

Technical Steering Committee, Open source, Discourse forum, StackExchange for
questions, github for collaboration & issue tracking, annual conference

● 1700 SW packages released on a lifecycle plan with CI testing infrastructure

The ROS Community
Special Interest Groups:

● ROS-Ag (Agricultural)
● ROS-Space
● Open-RMF (building

frameworks, elevators, etc)

Contributors, Maintainers

What is linorobot2?
● A SW platform configured by a

script & config files for wide HW
flexibility.

○ HW flexibility can lead to low cost
● User apps can ask nav2 to navigate

the robot somewhere on a map,
avoiding obstacles as it goes

● Linorobot2 nodes help nav2 nodes
navigate through a map

HW Flexibility

● Robot types: 2WD, 4WD, Mechanum
● Microcontrollers: ESP32, Pico, Teensy

(Arduino environment)
● Motor drivers: PWM based (INA/INB/ENA

e.g. L298, BTS7960, TB6612, etc, or ESC
types e.g. brushless DC)

● Motors: with quadrature encoder
● Lidars over wifi: ldlidar LD19/LD06/STL27L
● Lidars over serial/USB: RPLidar, LDlidar,

STlidar, YDlidar, depth cameras
● IMU: GY85, MPU6050 (GY521), MPU9150,

MPU9250, QMI8658

Linorobot2 instances

You build the HW,
linorobot provides the SW
(for compatible robots)

● Created by Juan Miguel
Jimeno (Singapore) 2016

● Jazzy + ESP32 port by
Thomas Chou (Taiwan) 2024

Minniebot BOM cost
Minimal Parts List
Description Qty Price ea. Cost

Gear motor w/encoder 2 $7.40 $14.80

Wheel 2 $1.50 $3.00

Waveshare General robot ctrlr 1 $27.99 $27.99

Lidar LD19 1 $59.00 $59.00

Battery, Ovonic 3S 2200mAh 1 $18.99 $18.99

IMU - MPU6050 1 $6.98 $6.98

Totals $130.76

Config shown
would be ~$350

Other options for a ROS2
Navigable Robot

● Turtlebot-4 $2k (lite - $1300)
● Makerspet + kaia.ai ~$120
● Yaboom $400. Yahboom has

AutomaticAddison tuts.
● HiWonder $600
● Ali Express & others

kaia.ai SW is closest SW package in
terms of flexibility. New SW in a
container running on Windows.

IMHO there are other reasonable
options for a ROS2 robot with nav
support, but they all deliver a fixed
config. Linorobot2 seems good for
flexible HW configuration, BYOR, with
a good out-of-the-box experience (not
turn-key, but close).

Yaboom HiWonder

Turtlebot 4 (lite & regular)

Makerspet HW +
kaia.ai SW

Linorobot in the ROS Package context
● Metapackage is a collection of

packages, each of which may
contain nodes that run at the
node layer (binaries/processes).
Metapackage is a packaging
concept.

● Nodes do the work, process
data

● HW-dependent nodes expose
specific devices to ROS

● index.ros.org: 1700 packages
● 2700 repos tagged with #ROS!

Expect to deal with a large SW system.
(You already do: Windows or Linux,
compilers & libraries, python, cell
phone, Arduino)

● Two repos contain linorobot
packages & firmware

Linorobot System Design
(onboard computer version shown)

USB or wifi

Software Architecture
● ROS nodes run on

robot computer
● IMU & motor control

(& lidar forwarding)
run on robot
microcontroller

Demo - micro-ros
● micro-ros agent topics for Linorobot
● Joystick control available
● Minniebot_wifi_bringup

○ ros2 launch linorobot2_bringup
bringup.launch.py
micro_ros_transport:=udp4
micro_ros_port:=8888
lidar_transport:=udp_server
lidar_server_port:=8889

● Servo control:
○ ros2 topic pub /servo

example_interfaces/msg/Int32 "{data: 1100}"

Navigation Levels
● Navigation primary goal: move a robot from point A to point B

○ Respond to obstacles - ODOA (Obstacle Detection / Obstacle Avoidance
● Level 1: Dead reckoning: odometry/IMU within robot-local frame

○ Example: Four Square contest
○ Waypoints are relative to robot start position/heading
○ Issue: distance & heading drift, initial heading

● Level 2: Navigate within a global frame (e.g. GPS)
○ Example: RoboColumbus navigating between waypoints& cones, 6-can localizing bots
○ Eliminates drift & initial heading issues
○ Issue: Route must be manually planned

● Level 3: Navigate within a map that’s in a global frame (e.g. Google maps,
robo-vacuum in a house), with automatic path planning.

○ Level 3 and Linorobot is focus of this talk

Map-based navigation
● What is a map?

a. A 2d representation of the environment: fixed
obstacles (walls, furniture, road boundaries) and
possible destinations (kitchen, bedroom) and
navigable areas, generally with some resolution (e.g.
5cm default in nav2)

● 3 Issues:
a. How to make a map (SLAM)
b. How to plan a path within a map
c. ODOA (the map does not include dynamic

obstacles)
● There are well-known algorithms for global path

planning within a map (A* etc)
● ODOA is handled by a local path planner which

plans deviations from the planned global path to
avoid an obstacle

SLAM - Simultaneous Localization & Mapping
● Demo SLAM with linorobot

○ ros2 launch linorobot2_bringup bringup.launch.py micro_ros_transport:=udp4 micro_ros_port:=8888
lidar_transport:=udp_server lidar_server_port:=8889

○ ros2 launch linorobot2_navigation slam.launch.py rviz:=true
● Concept: SLAM discovers a map as user manually drives robot OR asks it to navigate

within its map
● After map is made you would save the map

○ ros2 run nav2_map_server map_saver_cli -f <map_name> --ros-args -p save_map_timeout:=10000.
● Thereafter navigator would plan a path for a mission (and replan for ODOA) using the map.

The path would only go through navigable areas. UNMAPPED by policy
● How SLAM works: tracking the relative motion of key points in lidar scan, while using

odometry, IMU to help keep robot localized relative to those points, and discovering more
points as it goes.

○ BUT if it loses localization to IMU/odometry it can “discover” new lidar features that it lost track of, and make
a wrong map

Global Costmap, Local Costmap
● Global costmap: This costmap is used

to generate long term plans over the
entire environment….for example, to
calculate the shortest path from point
A to point B on a map.
○ Created with SLAM or editor
○ Used by global planner

● Local costmap: This costmap is used
to generate short term plans over the
environment….for example, to avoid
obstacles.
○ Dynamically created from lidar
○ Used by local planner

● Costmaps need to be aligned!!!

● Pose: Position & Orientation
within a frame

● Wall pose within lidar frame
● Lidar pose within robot frame
● Robot pose within odom frame
● Odom frame pose within map

frame

Coordinate Frames & Localization

1 m 3 m

Navigation demo:
understanding rviz

● Global costmap has
“potential gradient”

Global costmap Map frame origin

odom frame
origin

Robot model

Local costmap

Lidar hits

amcl localization
particle swarm

Visibility switches

Navigation demo

● Starting nav:
○ Robot bringup: ros2 launch linorobot2_bringup bringup.launch.py micro_ros_transport:=udp4

micro_ros_port:=8888 lidar_transport:=udp_server lidar_server_port:=8889
○ ros2 launch linorobot2_navigation navigation.launch.py rviz:=true map:=<path to yaml>

● Setting (and resetting) initial pose in a map
● Navigate to a point
● Navigate through waypoints with obstacle avoidance

Nav2 API
● Loop waiting for completion or ^CNav2 wouldn’t be much use if it required rviz to

move the robot. Nav2 has an API for user apps. A
little programming is all that’s required.

● Instantiate navigator
● Define goal_pose
● Ask navigator to goToPose

Mix’n’Match with Nav2:
the pièce de résistance!

● Demo: joystick-driven motion
while nav2 continues to track
pose, intermixed with nav goals

● User app can ask Nav2 to
goToPose(pose1), then take the
reins and do a custom motion
(e.g. advance and grab can),
then hand back to Nav2 to
goToPose(pose2)

Is that magic or what???

Workflow for making a linorobot2
https://github.com/hippo5329/linorobot2_hardware/wiki

1. Install the software (ROS-jazzy, linorobot2 repos).
2. Test micro-ROS agent connection before wiring

and building the robot.
3. Connect IMU and run test_sensors.
4. Connect micro-ROS agent again and check

/imu/data topic.
5. Design & build your robot and customize

configuration file.
6. Test the motors and encoder. Test the sensors.

Test the Lidar.
7. Launch robot bringup.
8. Use a keyboard to move the robot. Use a

gamepad to move the robot.
9. Launch slam and save the map.

10. Launch navigation with the map.
11. Write some application SW to navigate as

needed. 😂
Examine config file

https://github.com/hippo5329/linorobot2_hardware/wiki

Linorobot2:
The Good
● Map-based navigation
● Variety of supported motor drivers,

sensors
● Good tools for logging & analyzing

data from your robot
● ROS is built around composable

nodes. (Nodes should do one thing
well, and be able to be composed
into a system) - this makes it
extensible.

● Network-based

● There isn’t a branch labeled “Jazzy”. BAD.
● ROS2 & micro-ros are currently based on

DDS. It may not work with some home
routers. UGLY

● Thomas Chou’s forks of the upstream
repos have diverged from upstream. I’ve
made changes to Chou’s repos for real
robots while Jemeno has made changes to
the upstream repo for simulation. THEY
NEED TO RE-CONVERGE! UGLY

Linorobot2:
The Bad & The Ugly

Why should I use
ROS2 Navigation with

Linorobot2?
It makes you more powerful!

● Come join me exploring
linorobot2 at DPRG Robot
Builders Night Virtual meetings

● All my robots will run
linorobot2 soon

Support info

References
Thomas Chou’s Jazzy linorobot2_hardware repo & wiki:

https://github.com/hippo5329/linorobot2_hardware

https://github.com/hippo5329/linorobot2_hardware/wiki

Thomas Chou’s Jazzy linorobot2 repo

https://github.com/hippo5329/linorobot2

Automatic Addison Tutorials:

● All tutorials: https://automaticaddison.com/tutorials/
● ROS2 Navigation: https://automaticaddison.com/tutorials/#Navigation

Nav2 Simple Commander API: https://docs.nav2.org/commander_api/index.html

https://github.com/hippo5329/linorobot2_hardware?tab=readme-ov-file
https://github.com/hippo5329/linorobot2_hardware/wiki
https://github.com/hippo5329/linorobot2
https://automaticaddison.com/tutorials/
https://automaticaddison.com/tutorials/#Navigation
https://docs.nav2.org/commander_api/index.html

Optional configuration
● Set up syslog server to record logs from

microcontroller
● Set up OTA FW upgrade

